(Image credit: Tom’s Hardware)

Se stai cercando migliore CPU da gioco o il migliore CPU per workstation, ci sono solo due scelte tra cui scegliere: AMD e Intel. Questo fatto ha generato un seguito quasi religioso per entrambi i campi e le conseguenti guerre di fuoco, che rendono difficile ottenere consigli imparziali sulla scelta migliore per il tuo prossimo processore. Ma in molti casi, la risposta è in realtà molto chiara. In effetti, per la maggior parte degli utenti, è una vittoria clamorosa a favore di AMD, come puoi vedere nei nostri CPU Benchmark Gerarchia. Si tratta di un incredibile capovolgimento delle sorti del produttore di chip dopo essere sull’orlo della bancarotta appena quattro anni fa, rendendo la sua svolta ancora più impressionante in quanto continua a sconvolgere la radicata Intel dopo aver goduto di un decennio di dominio.

Questo articolo tratta l’infinito argomento delle CPU desktop AMD vs Intel (non ci occupiamo di laptop o chip per server) in base a ciò che prevedi di fare con il tuo PC, prezzi, prestazioni, supporto driver, consumo energetico e sicurezza, dandoci una visione chiara dello stato della concorrenza. Discuteremo anche delle litografie e delle architetture che influenzano i pali mobili. Nel complesso, c’è un chiaro vincitore, ma quale marca di CPU dovresti acquistare dipende principalmente da che tipo di funzionalità, prezzo e prestazioni sono importanti per te.

Puoi vedere come tutti questi processori si accumulano nel nostro CPU Benchmark Gerarchia, ma il panorama è certamente cambiato sulla scia del Ryzen 5000 lancio. I processori AMD più recenti, i Ryzen 9 5950X e Ryzen 9 5900X , per non parlare del Ryzen 5 5600X, ha sconvolto l’intera gamma di desktop mainstream. Puoi andare alla nostra ampia copertura approfondita del Ryzen 5000 serie, inclusi prezzi, benchmark e disponibilità, per maggiori informazioni. Al loro debutto, la serie Ryzen 5000 era il chip con le prestazioni più elevate sul mercato e batteva Intel in tutti i parametri che contano, inclusi giochi, prestazioni delle applicazioni, consumo energetico e termiche.

Intel ha risposto con il suo processori Rocket Lake, e sicuramente mettono pressione sulla formazione Ryzen 5000. Rocket Lake offre un miglioramento dell’IPC del 19% e velocità di clock elevate che si estendono fino a 5,3 GHz con l’ammiraglia Core i9-11900K, ma i chip sono ancora incisi sul vecchio processo a 14 nm. Ciò significa che i nuovi chip raggiungono gli otto core rispetto ai dieci core trovati con i chip Intel di precedente generazione. Sorprendentemente, gli esplosivi guadagni IPC dell’architettura Willow Cove hanno aiutato Intel a ridurre il divario di prestazioni con AMD e in alcuni casi a strappare vittorie chiave in fasce di prezzo importanti.

Intel ha anche il suo Alder Lake in arrivo sul mercato entro la fine dell’anno, che ridefiniranno completamente i chip per PC desktop x86 con un nuova architettura ibrida. Per non essere messo in secondo piano, AMD ha le sue nuove CPU con 3D V-Cache in produzione entro la fine dell’anno. Questi chip porteranno fino al 15% in più di prestazioni di gioco grazie a un quasi impensabile 192 MB di cache L3 imbullonato su un processore Zen 3 truccato. Ciò significa che i pali della porta potrebbero spostarsi verso la fine dell’anno, ma questa è la storia del nastro per lo stato attuale del mercato.

Prezzo e valore della CPU AMD vs Intel

Il prezzo è la considerazione più importante per quasi tutti e AMD è stato generalmente difficile da battere nel dipartimento del valore. I processori Ryzen serie 5000 dell’azienda segnano un aumento del prezzo di $ 50 su tutta la linea, ma i chip più veloci guadagnano i loro cartellini dei prezzi più alti. L’azienda offre una miriade di vantaggi, come l’overclocking completo sulla maggior parte dei modelli, per non parlare del software gratuito che include l’innovativa funzione di auto-overclocking Precision Boost Overdrive.

Trai vantaggio anche dall’ampia compatibilità delle schede madri con il AM4 Socket CPU che supporta sia la compatibilità diretta che quella precedente, garantendo non solo il massimo per il tuo processore, ma anche per il tuo investimento sulla scheda madre (ci sono avvertenze con la serie 5000). AMD consente anche l’overclocking su tutte le schede madri tranne la serie A (vedi il nostro articolo su come overclockare AMD Ryzen), che è un altro vantaggio per gli utenti. E, in questa battaglia tra CPU AMD e Intel, non abbiamo ancora discusso del silicio vero e proprio.

Prezzi del processore per famiglia AMD Intel Threadripper-Cascade Lake-X $ 900-$ 3.750 $ 800-$ 1.000 ($ 2.999) AMD Ryzen 9-Intel Core i9 $ 434-$ 799 $ 422-$ 549 AMD Ryzen 7-Intel Core i7 $294-$449 $298-$409 AMD Ryzen 5-Intel Core i5 $149-$299 $157-$272 AMD Ryzen 3-Intel Core i3 $95-$120 $ 97-$ 154

L’arrivo di Intel I modelli Comet Lake-S hanno scoperto che l’azienda aggiunge più core, thread e funzionalità alla sua gamma mainstream, ma senza un aumento dei prezzi gen-on-gen. Ciò equivaleva a una sostanziale riduzione delle metriche di prezzo per core e prezzo per thread, ma AMD ha ridotto i prezzi in risposta per mantenere Intel sulle spine. AMD attualmente detiene il vantaggio del prezzo per core nella gamma Ryzen 9 e 7 (rispetto a Core i9 e i7), mentre Intel detiene il vantaggio nella gamma Core i5 e i3 (rispetto a Ryzen 5 e 3).

Intel include dispositivi di raffreddamento in bundle con le sue SKU senza overclocking (devi pagare di più per l’overclocking), ma sono fragili e”abbastanza buoni”, nella migliore delle ipotesi. Abbiamo persino visto casi in cui i dispositivi di raffreddamento di serie Intel non forniscono prestazioni complete a impostazioni stock.

Inoltre, Intel non offre affatto un dispositivo di raffreddamento per i suoi costosi SKU della serie K overclockabili (vedi il nostro articolo su come overcloccare una CPU Intel). Assicurati di budget in un dispositivo di raffreddamento (e robusto) se hai intenzione di overclockare un processore Intel. Nel frattempo, la maggior parte dei dispositivi di raffreddamento in bundle di AMD sono adatti per un overclock almeno moderato. Tuttavia, quelli sono arrivati ​​solo come componenti aggiuntivi standard con la serie Ryzen 3000 di precedente generazione, la maggior parte dei quali non è stata ancora soppiantata dai nuovi equivalenti Ryzen 5000. Solo uno dei primi quattro processori AMD Ryzen 5000, il Ryzen 5 5600X, viene fornito con un dispositivo di raffreddamento in bundle.

Intel ha potenziato i suoi dispositivi di raffreddamento in bundle per diversi modelli Rocket Lake-S, ma l’estetica e la leggera temperatura i miglioramenti non sono sufficienti per eguagliare i dispositivi di raffreddamento competenti di AMD forniti con la sua serie Ryzen 3000 e non sono disponibili su tutti i modelli.

Intel non solo addebita un sovrapprezzo per i suoi chip serie K overclockabili, ma anche devi sborsare per una costosa scheda madre della serie Z per il privilegio di overclockare il tuo processore: Intel non consente l’overclocking completo sulle schede madri della serie B o H. Intel ha ora abilitato l’ memoria overclocking sui suoi chipset B560 e H570 e questo funziona con qualsiasi chip compatibile con la piattaforma, ovvero tutti i Comet Lake di decima generazione, Rocket Lake di undicesima generazione e l’undicesima generazione. Processori Gen Comet Lake Refresh. Tuttavia, queste modifiche si applicano solo ai modelli della serie 500.

Intel ha anche una lunga storia di transizioni rapide dei socket, il che significa che le probabilità di far cadere un nuovo chip nella scheda madre esistente o di portare il vecchio processore su una tavola più recente, non sono così alti. Pianificare una compatibilità limitata in avanti e indietro sul lato Intel. Il Rocket Lake di Intel porta finalmente il supporto per la connettività PCIe 4.0, ma il chipset della serie 500 di Intel non supporta PCIe 4.0 come i chipset di AMD. Ciò significa che ottieni 20 corsie solo dal processore: 16 corsie per la grafica e quattro corsie per una singola porta M.2, limitando le opzioni di connettività.

Mentre AMD offre il massimo per il tuo sudato dollaro, come con qualsiasi prodotto, puoi aspettarti di pagare un premio per le massime prestazioni, in particolare il Ryzen 9 5950X. La serie Ryzen 5000 di AMD è la fine della linea per il collaudato socket AM4, quindi non dovresti aspettarti che quei chip funzionino nelle future piattaforme AMD.

Tuttavia, AMD ha le sue nuove CPU con 3D V-Cache è andato in produzione entro la fine dell’anno. Questi chip porteranno fino al 15% in più di prestazioni di gioco grazie a 192 MB di cache L3 quasi impensabili su un processore Zen 3 truccato, il che significa che potrebbero arrivare al socket AM4. Solo il tempo lo dirà.

I nuovi processori Ryzen 5000 di AMD sono disponibili anche senza dispositivi di raffreddamento in bundle per le famiglie Ryzen 9 e 7, ma AMD afferma che l’aumento delle prestazioni compensa la mancanza di dispositivi di raffreddamento e prezzi più elevati. Le nostre recensioni confermano questa affermazione: i chip Ryzen 5000 offrono ancora una miscela convincente di prezzi e prestazioni, a condizione che tu possa trovarli al dettaglio vicino al loro prezzo consigliato.

Vincere: AMD. Quando si confrontano le CPU Intel con quelle AMD, Team Red ha una storia avvincente di valore in tutta l’ampiezza del suo stack di prodotti, specialmente quando prendiamo in considerazione le prestazioni per dollaro. Tuttavia, se stai cercando una grafica integrata abbinata a un processore con più di quattro core, Intel è attualmente la tua unica scelta per i chip al dettaglio, sebbene AMD abbia il suo APU Cezanne in arrivo ad agosto. Non che consigliamo la grafica integrata per la maggior parte degli utenti, in particolare se sei interessato ai giochi: dai un’occhiata al nostro recente confronto della grafica integrata su processori AMD e Intel per maggiori dettagli.

Prestazioni di gioco della CPU AMD vs Intel

Nella battaglia tra CPU AMD e Intel, AMD detiene il comando nella critica fasce di prezzo, in particolare nella fascia media e alta del suo stack, ma i nostri benchmark mostrano che anche le prestazioni di gioco di Intel non sono trascurate. Di seguito abbiamo un’ampia selezione di misurazioni collettive delle prestazioni di gioco per i chip esistenti nelle diverse fasce di prezzo. Puoi vedere una visione molto più olistica nella nostra gerarchia CPU Benchmark.

Immagine 1 di 17

AMD vs Intel

(Image credit: Tom’s Hardware)
Immagine 2 di 17

AMD vs Intel

(Immagine credito: Tom’s Hardware)
Immagine 3 di 17

AMD vs Intel

(Image credit: Tom’s Hardware)
Immagine 4 di 17

AMD vs Intel

(Image credit: Tom’s Hardware)
Immagine 5 di 17

Intel vs AMD Gaming Performance

(Image credit: Tom’s Hardware)
Immagine 6 di 17

Intel vs AMD Gaming Performance

(Image credit: Tom’s Hardware)
Image 7 of 17

Intel vs AMD Gaming Performance

(Image credit: Tom’s Hardware)
Image 8 of 17

Intel vs AMD Gaming Performance

(Image credit: Tom’s Hardware)
Image 9 of 17

(Image credit: Tom’s Hardware)
Image 10 of 17

(Image credit: Tom’s Hardware)
Image 11 of 17

(Image credit: Tom’s Hardware)
Image 12 of 17

(Image credit: Tom’s Hardware)
Image 14 of 17

(Image credit: Tom’s Hardware)
Image 15 of 17

(Image credit: Tom’s Hardware)
Image 16 of 17

(Image credit: Tom’s Hardware)
Image 17 of 17

(Image credit: Tom’s Hardware)

Our first four slides encapsulate performance with the new Rocket Lake and Ryzen 5000 processors included, while the remainder of the test results gives historical context to other previous-gen processors. As you can see, AMD largely leads the gaming landscape with its Zen 3-powered Ryzen 5000 processors, which now hold the advantage in both 1080p and 1440p gaming, but Intel has shrunk the gap to make gaming a closely-contested affair. The Ryzen 9 5900X slots in as the fastest gaming chip on the market, price be damned, but the Ryzen 5 5600X offers nearly the same level of performance but at a more amenable $300 price point, making it our uncontested top pick for gaming.

Intel’s Core i9-11900K is nearly as fast as the vaunted Ryzen 9 5900X, particularly after overclocking, and you’d be hard-pressed to notice the difference between the two in real-world gaming sessions. The Core i7-11700K is hard to justify for gaming, but its little brother, the Core i5-11600K, is a solid chip for affordable high-performance gaming rigs. The Core i5-11400 is perhaps the most impressive Rocket Lake gaming chip – its blend of price and performance absolutely dominates the sub-$200 market and will continue to do so until AMD fields new chips.

We have in-depth head-to-head comparisons in each of the key price brackets in the following articles: 

However, bear in mind that the performance delta between Intel and AMD’s comparably-priced chips often isn’t worth paying a huge premium, at least for the vast majority of enthusiasts. You’d be hard-pressed to notice the small differences in gaming performance at the top of the AMD vs Intel stack, but things are more complicated in the mid-range.

You’ll need a fire-breathing high-end GPU and one of the best gaming monitors with a high refresh rate to get the most out of a small performance advantage, and you’ll need to game at the mundane 1080p resolution, too. Kicking your resolution up to 1440p and beyond typically pushes the bottleneck back to the GPU, so you won’t gain as much from your CPU’s gaming prowess. However, a bit of extra CPU gaming performance could pay off if you plan on updating your graphics card with a newer generation while keeping the rest of your system intact. We expect most builds in the mid-range to come with lesser GPUs, which generally serve as an equalizer in terms of CPU performance.

In terms of integrated graphics performance, there’s no beating AMD. The company’s current-gen Picasso APUs offer the best performance available from integrated graphics, and the Renoir series builds on that advantage. Unfortunately, the Renoir chips aren’t available at retail (here’s a look at the Ryzen 7 4750G, though), but AMD’s hotly-anticipated Cezanne APUs come in August.

Winner: Tie Both companies win this round of the Intel vs AMD CPU showdown. AMD’s relentless pressure has forced a renaissance in terms of CPU performance for desktop PC gaming, spurring Intel to respond with more powerful processors of its own. Taken as a whole, both companies have extremely competitive chips in the respective price ranges — you’ll often be hard-pressed to notice a difference between them in real-world gaming.

If you’re a gaming fanatic that prizes every single last frame you can squeeze out, particularly if you’re into overclocking, AMD’s Ryzen 9 5900X is the answer on the high-end, and that leading-edge performance will also pay off if you plan to upgrade your GPU soon. Just plan to pay for the privilege.

You’ll find that AMD is also often the best option in the mid-range. Unless you’re running a tricked-out rig with the fastest GPUs paired with low-resolution high-refresh monitors, you won’t miss the slim gaming performance deltas to be had with AMD CPUs, though. At that point, either an AMD or Intel chip will provide a more than acceptable level of gaming performance. However, it’s always good to have a little extra gas in the tank for future GPU upgrades, so make sure to examine our closer head-to-head matchups for each price range before you pull the trigger.

AMD vs Intel Productivity and Content Creation Performance

Image 1 of 6

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 2 of 6

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 3 of 6

AMD vs Intel Single and Multi-Threaded Performance

(Image credit: Tom’s Hardware)
Image 4 of 6

AMD vs Intel Single and Multi-Threaded Performance

(Image credit: Tom’s Hardware)
Image 5 of 6

(Image credit: Tom’s Hardware)
Image 6 of 6

(Image credit: Tom’s Hardware)

In the non-gaming performance battle of AMD vs Intel CPUs, the picture is a lot clearer. AMD’s highest-end chips take the outright win in terms of the ultimate performance in threaded productivity and content creation applications. AMD’s copious slathering of cores, threads, and cache on its flagship Ryzen 9 5950X and 5900X processors also equates to a big win in the performance-per-dollar category.

Intel’s trouble moving forward to denser process nodes has left it behind in the core count race, and now AMD has offerings on both the HEDT and mainstream desktop that Intel simply can’t match. Consider this: AMD has a 16-core Ryzen 9 5950X for the mainstream desktop that offers twice the cores and threads as Intel’s most powerful Core i9-11900K. Meanwhile, AMD’s Ryzen Threadripper 3990X comes with an insane 64 cores and 128 threads for HEDT. That’s a 3.5X advantage in core counts over Intel’s halo HEDT models.

However, Intel has made things a bit more interesting with its Core i7 and i5 models. These chips go toe-to-toe with AMD’s Ryzen 7 and 5 models, offering nearly the same level of performance at lower price points. That makes Intel’s sub-$400 Rocket Lake chips incredibly attractive if all you’re looking for is performance in heavily threaded content creation applications.

Solid performance in single-threaded work equates to faster performance in all manner of workloads, particularly day-to-day applications that rely on snappy responsiveness from the processor. The Rocket Lake Core i9-11900K has taken the uncontested lead in single-threaded performance across the full spate of our benchmarks, but that’s Intel’s most expensive mainstream CPU. We see a more pitched battle throughout the rest of both product stacks. Each chip has comparable performance against competing chips in its price range, making this largely a wash for most users.

Winner: AMD. For professionals on the hunt for performance in content creation and productivity applications, the winner of AMD vs Intel CPUs goes to AMD on the strength of its higher core counts. AMD’s lack of integrated graphics on its 8-core and above CPUs (for now) means you’ll have to stick with Intel if you want to build a rig without dedicated graphics. Still, most professionals will want a dedicated graphics card regardless.

AMD vs Intel Processor Specifications and Features

AMD has its Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9, and Threadripper lines, while Intel breaks its offerings up into the Core i3, Core i5, Core i7, Core i9, and Cascade Lake-X families. To compare Intel vs AMD CPUs based on specs and features, we could chart the entire product stacks, but for the sake of brevity, we’ll focus on the top chips in the respective families. Be aware that both companies have value options within each tier, but we can get a general sense of the current competitive landscape with these (relatively) short lists. We’re using both vendors’recommended pricing and street pricing to give you a sense of the current state of the market.

The high end desktop (HEDT) is the land of creative prosumers with fire-breathing multi-core monsters for just about every need. Intel has long enjoyed the uncontested lead in this segment, but while AMD’s first-gen Threadripper lineup disrupted the status quo, the Threadripper 3000 lineup destroyed it.

AMD vs Intel CPUs HEDT Specs and Pricing High End Desktop (HEDT) MSRP/Retail Cores/Threads Base/Boost GHz L3 Cache TDP PCIe Memory Threadripper 3990X $3,990/$3,750 64/128 2.9/4.3 256 280W 72 Usable Gen4 Quad DDR4-3200 Intel W-3175X $2,999/N/A 28/56 3.1/4.8 38.5 255W 48 Gen3 Six-Channel DDR4-2666 Threadripper 3970X $1,999/$1,899 32/64 3.7/4.5 *128 280W 72 Usable Gen4 Quad DDR4-3200 Threadripper 3960X $1,399/$1,399 24/48 3.8/4.5 *128 280W 72 Usable Gen4 Quad DDR4-3200 Xeon W-3265 $3,349/N/A 24/48 2.7/4.6 33 205W 64 Gen3 Six-Channel DDR4-2933 Core i9-10980XE $979/$1,099 18/36 3.0/4.8 24.75 165W 48 Gen3 Quad DDR4-2933

Here we can see that when it comes to AMD vs Intel HEDT CPUs, AMD holds the uncontested lead with 64 cores and 128 threads in its flagship Threadripper 3990X, and the 32-and 24-core Threadripper 3970X and 3960X models cement the overwhelming lead over Intel’s chips.

Intel splits its highest-end lineup into two classes, with the Xeon W-3175X and W-3265 dropping into exotic LGA3647 motherboards that carry eye-watering price tags to match the chips’insane pricing. These aren’t really enthusiast-class systems, though; think of these as more for the professional workstation market. 

Intel’s HEDT lineup truly begins with its 18-core Cascade Lake-X Core i9-10980XE that drops into existing LGA2066 motherboards. The chip is powerful given its price point, but Threadripper’s 3.5X advantage in core counts is impossible to beat, so Intel has basically ceded the top of the HEDT stack to AMD. 

You’ll get more cores, cache, and faster PCIe 4.0 connectivity with AMD’s Threadripper lineup, but they do come with higher price tags befitting such monstrous processors. However, when we boil it down to per-core pricing, or how much you pay for each CPU core, AMD does offer a compelling value story.

AMD vs Intel CPUs High End Specs and Pricing High End Mainstream MSRP/Retail Cores/Threads Base/Boost GHz $-Per-Core (MSRP) L3 Cache TDP PCIe Memory Graphics Ryzen 9 5950X $799 16/32 3.4/4.9 $50 64 105W 24 Gen4 Dual DDR4-3200 N/A Ryzen 9 5900X $549 12/24 3.7/4.8 $46 64 105W 24 Gen4 Dual DDR4-3200 N/A Core i9-11900K/KF $549 (K)/$524 (KF) 8/16 3.5/5.3 ~$68/~$65 16 125W 20 Gen4 Dual DDR4-3200 UHD Graphics 750 Xe 32EU-1.3 GHz (non-F only) Core i9-10850K $453 10/20 3.6/5.2 ~$43 20 95W 16 Gen3 Dual DDR4-2933 UHD 630-1.2 GHz Core i9-11900/F $449/$432 (F) 8/16 2.5/5.2 ~$56/$54 16 65W 20 Gen4 Dual DDR4-3200 UHD Graphics 750 Xe 32EU-1.3 GHz (non-F only) Core i7-11700K/KF $409 (K)/$384 (KF) 8/16 3.6/5.0 ~$51/~$48 16 125W 20 Gen4 Dual DDR4-3200 UHD Graphics 750 Xe 32EU-1.3 GHz (non-F only) Ryzen 7 5800X $449 8/16 3.8/4.7 $56 32 105W 24 Gen4 Dual DDR4-3200 N/A Core i7-11700/F $333/$308 (F) 8/16 2.5/4.9 ~$42/~$39 16 65W 20 Gen4 Dual DDR4-3200 UHD Graphics 750 Xe 32EU-1.3 GHz (non-F only)

In the battle of high-end AMD vs Intel CPUs, AMD’s Ryzen 9 and Ryzen 7 families square off against Intel’s Core i9 and Core i7 lineup. Again, AMD holds the absolute lead with the 16-core 32-thread Ryzen 9 5950X that sets the high watermark for the mainstream desktop both in terms of core counts and performance—and price, not including a cooler. The 5950X is hard to find in stock, but the Ryzen 9 3950X is equally impressive in most facets. Although it isn’t as responsive in single-threaded work or gaming as the 5950X, it’s still a good fit for most users.

Intel’s eight-core 16-thread Core i9-11900K pales in comparison, but based on pricing, it actually battles the Ryzen 9 5900X. We analyzed these two processors head-to-head in our Ryzen 9 5900X vs Core i9-11900K showdown, with the 5900X coming away with the win.

Here we see that AMD has both the core count and price-per-core advantage in this price bracket. The 11900K does offer impressive gaming performance and fast performance in lightly-threaded workloads, but its power consumption and thermal generation can create a bit of extra cost due to the need for a motherboard with robust power circuitry and a capable cooler.

A similar story plays out in the decidedly more mainstream Ryzen 7 and Core i7 markets. Honestly, these are the chips the majority of gamers should buy. Here AMD’s Ryzen 7 5800X matches Intel’s Core i7-11700K thread-for-thread, but the Ryzen 7 5800X offers a better blend of performance and future upgradeability. 

AMD vs Intel CPUs Mid-Range and Budget Specs and Pricing Mainstream MSRP/Retail Cores/Threads Base/Boost GHz $-Per-Core(MSRP) L3 Cache TDP PCIe Memory Graphics Ryzen 5 5600X $299 6/12 3.7/4.6 $50 32 65W 24 Gen4 Dual DDR4-3200 N/A Core i5-11600K/KF $272 (K)/$247 (KF) 6/12 3.9/4.9 ~$45/~$41 12 95W 20 Gen4 Dual DDR4-3200 UHD Graphics 750 Xe 32EU-1.3 GHz (non-F only) Core i5-11600 $224 6/12 2.8/4.8 ~$38 12 65W 20 Gen4 Dual DDR4-3200 UHD Graphics 750 Xe 32EU-1.3 GHz Ryzen 5 3600 $199/$175 6/12 3.6/4.2 ~$33 32 65W 24 Gen4 Dual DDR4-3200 N/A Core i5-11500 $202 6/12 2.7/4.6 ~$34 12 65W 20 Gen4 Dual DDR4-3200 UHD Graphics 750 Xe 32EU-1.3 GHz Core i5-11400/F $182/$157 (F) 6/12 2.6/4.4 ~$30/~$26 12 65W 20 Gen4 Dual DDR4-3200 UHD Graphics 730 Xe 24EU-1.3 GHz (non-F only) Ryzen 3 3300X $120 4/8 3.8/4.3 Not Available 16MB 65W 16+4 Gen4 Dual DDR4-3200 N/A Ryzen 3 3100 $99 4/8 3.8/3.9 Not Available 16MB 65W 16+4 Gen4 Dual DDR4-3200 N/A Ryzen 5 3400G $150/$207 4/8 3.7/4.2 Not Available 4MB 65W 16 Gen3 Dual DDR4-2933 Vega 11 Ryzen 3 3200G $99/$95 4/4 3.6/4.0 Not Available 4MB 65W 8 Gen3 Dual DDR4-2933 Vega 8

When it comes to AMD vs Intel mid-range and budget CPUs, the Core i5 and i3 families do battle with AMD’s Ryzen 5 and Ryzen 3 processors. This market segment comprises the most substantial portion of AMD and Intel’s sales, so pricing and value here are paramount.

AMD’s Ryzen 5 5600Xmatches Intel core-for-core and thread-for-thread to challenge the Core i5-11600K’s clock speed and overclocking advantage. The Ryzen 5 5600X vs Core i5-11600K battle is close, but the 5600X takes the edge due to its superior gaming performance. 

AMD also shored up its defenses with a new line of graphics-less $120 Ryzen 3 3300X and $99 Ryzen 3 3100 models, too. Three years ago, Intel’s flagship chips cost roughly $350 and came with four cores and eight threads, but now AMD’s Ryzen 3 lineup offers the same number of cores and threads for as low as $99. The Ryzen 3 3300X also offers more performance than the 7700K and beats all of Intel’s chips in the same price range. Good luck finding one, though, as these chips are rare at retail.

AMD also leans on its Ryzen 5 3600 along with the Ryzen 5 3400G and Ryzen 3 3200G APUs to fend off Intel’s Core i5-11500 and i5-11400, but that’s a no contest, as you can see in our Intel Core i5-11400 vs AMD Ryzen 5600 showdown. If you’re looking for a sub-$200 chip for gaming, Intel wins by a vast margin. That said, AMD’s APUs come with potent Vega graphics units that enable low-end gaming across a broad spate of titles. Intel’s chips can’t hold a candle there—you’ll need a discrete GPU if you plan to do any meaningful gaming.

AMD has made its new eight-core 16-thread Ryzen 5000″Cezanne”APUs available to OEMs and SIs for pre-built systems, but you can’t buy them at retail yet. However, there is good news-the Cezanne APUs come to retail in August 2021.

Neither vendor offers integrated graphics units (iGPU) with their HEDT chips. Still, even though Intel sells its graphics-less F-Series chips for a discount, it holds the advantage of having a graphics option across the full breadth of its mainstream product stack.

In contrast, AMD only offers integrated graphics on its APU models, which means you’ll need a discrete graphics card (GPU) for any retail chip that has more than four cores (or costs more than ~$150). That’s a significant disadvantage for most mainstream users who aren’t interested in gaming and eliminates a big chunk of the professional/OEM markets. Intel’s iGPUs are mostly useless for gaming but are useful for display and QuickSync purposes, while AMD’s iGPUs offer the best gaming experience, hands down. However, AMD’s limited selection cuts it out a significant portion of the market.

Winner: AMD. When you compare AMD vs Intel CPU specifications, you can see that AMD offers options with more cores and/or threads, more cache, and robust PCIe 4.0 support for the mid-range and high end. From the top of the HEDT market to the high-end and mid-range, AMD has a capable Ryzen processor that offers more value than comparable Intel models. Conversely, Intel now rules the budget segment, but we could see that change with the arrival of AMD’s potent APUs in the coming months. 

AMD vs Intel CPU Overclocking

(Image credit: Intel)

There’s no debate when you compare Intel vs AMD CPU overclocking. Intel offers the most overclocking headroom, meaning you can gain more performance over the baseline speed with Intel chips than you can with AMD’s Ryzen processors. 

As mentioned, you’ll have to pay a premium for Intel’s K-Series chips and purchase a pricey Z-Series motherboard, not to mention splurge on a capable aftermarket cooler (preferably liquid), to unlock the best of Intel’s overclocking prowess. However, once you have the necessary parts, Intel’s chips are relatively easy to push to their max, which often tops out at over 5 GHz on all cores with the 11th-Gen Rocket Lake processors.

Intel doesn’t allow full overclocking on B-or H-series motherboards, but it has infused memory overclocking into its B560 and H570 chipsets, and that works with any chip that is compatible with the platform, meaning all 10th-Gen Comet Lake, 11th-Gen Rocket Lake, and 11th-Gen Comet Lake Refresh processors. However, these changes only apply to 500-series models. That can provide a big boost to locked chips, like the Core i5-11400 we recently reviewed.

AMD doesn’t have as much room for manual tuning. In fact, the maximum achievable all-core overclocks often fall a few hundred MHz beneath the chips’maximum single-core boost. That means all-core overclocking can actually result in losing performance in lightly-threaded applications, albeit a minor amount.

Part of this disparity stems from AMD’s tactic of binning its chips to allow some cores to boost much higher than others. In tandem with AMD’s Precision Boost and innovative thread-targeting technique that pegs lightly-threaded workloads to the fastest cores, AMD exposes near-overlocked performance right out of the box. That results in less overclocking headroom.

However, AMD offers its Precision Boost Overdrive, a one-click auto-overclocking feature that will wring some extra performance out of your chip based on its capabilities, your motherboard’s power delivery subsystem, and your CPU cooling. AMD’s approach provides the best performance possible with your choice of components and is generally hassle-free. In either case, you still won’t achieve the high frequencies you’ll see with Intel processors (5.0 GHz is still unheard of with an AMD chip without liquid nitrogen cooling), but you do get a free performance boost.

AMD has also vastly improved its memory overclocking capabilities with the Ryzen 5000 series, which comes as a byproduct of the improved fabric overclocking capabilities. That allows AMD memory to clock higher than before while still retaining the low-latency attributes that boost gaming performance. 

Winner: Intel. When it comes to AMD vs Intel CPU overclocking, Team Blue has far more headroom and much higher attainable frequencies. Just be prepared to pay for the privilege – you’ll have to buy a K-series processor. Intel has added memory overclocking to the newest B-and H-series motherboards, which is an improvement.

AMD’s approach is friendlier to entry-level users, rewarding them with hassle-free overclocking based on their system’s capabilities, but you don’t gain as much performance. 

AMD vs Intel CPU Power Consumption and Heat

When comparing AMD vs Intel CPU power and heat, the former’s 7nm process node makes a huge difference. Power consumption comes as a byproduct of design choices, like lithography and architecture, which we’ll discuss below. However, higher power consumption often correlates to more heat generation, so you’ll need beefier coolers to offset the heat output of greedier chips.

Image 1 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 2 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 3 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 4 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 5 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 6 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 7 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 8 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 9 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 10 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)
Image 11 of 11

AMD vs Intel

(Image credit: Tom’s Hardware)

Intel has improved its 14nm processes to strengthen its power-to-performance ratio by more than 70% in the five long years it’s been on the market, but it’s no coincidence that Intel’s latest chips are known for high power consumption and heat. That’s because Intel has had to turn the power dial up further with each generation of chips to provide more performance as it fends off the resurgent AMD. That leads to problems with some stock coolers and also requires robust power delivery on your motherboard. Those factors combine to make Intel a notorious power guzzler.

Image 1 of 4

Intel vs AMD

(Image credit: Tom’s Hardware)
Image 2 of 4

Intel vs AMD

(Image credit: Tom’s Hardware)
Image 3 of 4

Intel vs AMD

(Image credit: Tom’s Hardware)
Image 4 of 4

Intel vs AMD

(Image credit: Tom’s Hardware)

In contrast, AMD has the benefit of TSMC’s 7nm node, which is more efficient than Intel’s 14nm. AMD does lose some of that advantage in its Ryzen 3000 and 5000 series processors due to a large central 14nm I/O die that comes as part of the package. Still, in aggregate, AMD’s 7nm chips either consume less power or provide much better power-to-performance efficiency. As a result, you’ll get more work done per watt of energy consumed, which is a win-win, and AMD’s cooling requirements aren’t nearly as overbearing.

In fact, the Ryzen 5000 series chips are the most power-efficient desktop PC chips we’ve ever tested, with the Ryzen 5 5600X offering the best efficiency. 

Winner: AMD. In judging AMD vs Intel CPU performance per watt, It’s impossible to overstate the importance of having the densest process node paired with an efficient microarchitecture, and TSMC’s 7nm and AMD’s Zen 3 are the winning combination. The latest Ryzen processors consume less power on a performance-vs-power basis, which equates to less heat generation. That eases cooling requirements.

AMD vs Intel CPU Lithography

There are a few major underlying technologies that dictate the potency of any chip. The most fundamental rule of processors still holds true: The densest process nodes, provided they have decent power, performance, and area (PPA) characteristics, will often win the battle if paired with a solid microarchitecture. When you judge AMD vs Intel CPUs based on these criteria, AMD has the lead in both lithography and architecture.

But whether or not AMD actually owns the process lead is a topic of debate: Unlike Intel, AMD doesn’t produce its processors. Instead, the company designs its processors and then contracts with outside fabs that actually produce the chips. In the case of AMD’s current-gen Ryzen processors, the company uses a combination of GlobalFoundries 12nm process and TSMC’s 7nm node for its chips, with the latter being the most important.

TSMC’s 7nm node is used by the likes of Apple and Huawei, among many others, so it benefits from industry-wide funding and collaborative engineering. The result is what Intel itself calls a superior 7nm process compared to Intel’s 10nm and 14nm chips. Intel says its process tech won’t achieve parity with the industry again until 2021, and it won’t retake leadership until it releases 5nm at an undefined time. 

The benefits of TSMC’s 7nm node mean AMD can build cheaper, faster, and denser chips with more cores, and all within a relatively low power consumption envelope. That lends the designs a comfortable lead, provided they’re combined with a decent design.

We don’t have to focus on Intel’s 10nm for this article: Intel has been stuck for six long years on the 14nm process for its desktop chips, which isn’t changing any time soon, and its 10nm chips that have debuted in laptops are constrained by the thermal and power limitations of a laptop chassis. 

Regardless of whether AMD can lay claim to developing the 7nm node to wrest the lead from Intel, the company had the foresight to contract with TSMC to gain access to a superior process node technology. That bedrock advantage gives AMD a wonderful silicon canvas to paint its microarchitectures on, a combination that Intel is finding impossible to beat with its 14nm chips.

AMD’s only concern is production capacity: While AMD has access to 7nm production, the company can’t source enough silicon from TSMC, at least in the near term, to match the power of Intel’s captive fabs. That leaves AMD exposed to shortages and potentially restricts market penetration. We’ve seen the most painful example of that weakness in the wake of AMD’s Ryzen 5000 and Radeon 6000 launches. AMD’s CPUs and GPUs are often almost impossible to find at retail, and even the company’s older models have fallen prey to the shortages. Meanwhile, Intel has plenty of processors available. 

Winner: AMD (TSMC). Intel has been stuck on 14nm for desktop processors for six years. The company has wrung an amazing amount of performance from its aging design through a series of”+”optimizations. Still, those enhancements aren’t enough to help Team Blue win the battle of AMD vs Intel CPU process nodes. Intel needs a good 10nm or 7nm desktop chip; the sooner, the better.

(Image credit: Fritchenz Frinz)

AMD vs Intel CPU Drivers and Software

When we look at AMD vs Intel CPU software support, Team Blue has a stronger reputation. AMD has been beset by issues with its CPU chipset drivers and graphics drivers of late, a natural byproduct of its limited resources compared to its much-larger rivals. Intel isn’t without its missteps on the driver front, but its reputation for stability helped earn it the top spot in the processor market, particularly with OEMs.

In terms of its established products, Intel’s graphics drivers have become much better lately as the company ramps up to bring its dedicated Xe Graphics cards to market. Day-zero game drivers have become the norm for the chip producer, which by virtue of its integrated graphics on its chips, is the world’s largest graphics vendor with an install base of over a billion screens—that’s a billion slow screens, but who’s counting? (Answer: Every PC gamer out there.)

You might be a little more cautious when approaching Intel’s more exotic solutions, though. In the past, the company has developed innovative new products that have been relegated to the dustbin of history due to pricing and market forces, and long-term support for those products might not always be clear cut.

AMD still has its work cut out for it. The company has had several issues with BIOS releases that failed to expose its chips’full performance, though AMD has mostly solved those issues after a long string of updates. As a side effect of being the smaller challenger, AMD also faces a daunting challenge in offsetting the industry’s incessant optimization for Intel’s architectures above all others.

Upsetting the semiconductor industry is hard, particularly when you’re fighting an entrenched and much-larger rival, and sometimes things get broken when you’re redefining an industry. In AMD’s case, those broken things consist of operating systems and applications that weren’t tuned to extract the full performance of its fledgling first-gen Zen architecture, let alone the core-heavy designs of Zen 2 and Zen 3. 

Winner: Intel wins the battle of AMD vs Intel CPU drivers and software. Over the last year, Intel has addressed its laggardly driver updates for its integrated graphics, and the company has an army of software developers at its disposal that help ensure its products get relatively timely support with the latest software. A decade of dominance also finds most software developers optimizing almost exclusively for Intel architectures. AMD has made amazing progress convincing the developer ecosystem to optimize for its radical new Zen architectures. However, there’s still plenty of work to be done as the company moves forward.

Intel vs AMD CPU Architecture

When comparing AMD vs Intel CPUs, we must consider that two design decisions have a big impact on performance, scalability, and performance-per-dollar: Interconnects and microarchitecture.

AMD’s Infinity Fabric allows the company to tie together multiple dies into one cohesive processor. Think of this as numerous pieces of a puzzle that come together to form one larger picture. The approach allows the company to use many small dies instead of one large die, and this technique improves yields and reduces cost. It also grants a level of scalability that Intel might not be able to match with its new mesh interconnect inside its HEDT chips, and it undoubtedly takes the lead over Intel’s aging ring bus in its desktop processors.

AMD first paired that advantage with its Zen microarchitecture, designed from the ground up for scalability, yielding an explosive 52% increase in instructions per clock (IPC) throughput over AMD’s previous-gen’Bulldozer’chips. The Zen 2 microarchitecture another 15% improvement to IPC. Paired with the 7nm process, AMD lunged forward another (up to) 31% in per-core performance (a mixture of frequency and IPC). Zen 3 brings another 19% jump in IPC, giving AMD its largest single step forward in the post-Bulldozer era. 

The move to the Zen 2 architecture brought AMD’s processors to near-parity with Intel’s finest in terms of per-core performance. That’s largely because Intel is stuck on 14nm, and its architectures are designed specifically for the nodes they are built on. That means promising new Intel microarchitectures can only ride on smaller processes, like 10nm, leaving the company woefully unprepared for its prolonged issues productizing 10nm products.

Zen 3 gave AMD a sizable lead in per-core performance, an incredibly important metric that quantifies the speed of the most important building block in a chip design. Intel’s Rocket Lake chips take huge steps forward in per-core performance, leaving both companies on a relatively even playing field in terms of per-core performance.

Rocket Lake features the backported Cypress Cove architecture, Intel’s first new microarchitecture for the desktop PC since Skylake arrived back in 2015. Intel says this new architecture is based on Ice Lake’s’Sunny Cove’architecture and also comes with the same performant 12th-gen Intel Xe LP graphics engine found in the Tiger Lake processors. 

“Back-porting”is a method that allows Intel to take a new design built on a smaller process node, in this case, 10nm, and etch it on an older, larger node (in this case, 14nm). The chips come with a new microarchitecture, but they still leverage Intel’s 14nm process, although we don’t know which revision (14nm++++?). This tactic allows Intel to extend the usability of its 14nm process while moving forward on the architectural front. Still, it is merely a stopgap measure while it readies 10nm for the upcoming Alder Lake processors. You can read more about the Cypress Cove architecture here.

Meanwhile, AMD continues plowing forward. AMD’s Zen 3 microarchitecture is refined and powerful-allowing the company to eclipse Intel’s performance in single-threaded workloads and gaming for the first time since the days of Athlon 64. Zen 3 truly is a watershed moment for AMD, but the company isn’t standing still, with new innovative 3D V-Stack versions of its Zen 3 processors coming next year that bring up to a whopping 192MB of L3 cache in a single processor. 

Winner: AMD. In judging AMD vs Intel CPU architecture, it’s clear that one brand is moving faster. Intel rode its Skylake microarchitecture since 2015, and while Cypress Cove provides impressive performance uplift, it comes as a backported design on an older process node. That’s far from ideal and often results in untenable levels of power consumption. AMD, fueled by rapid advances in its designs while Intel leans on a six-year-old process node, has taken the lead in many of the most important aspects of chip design.

AMD vs Intel CPU Security

The last few years have found security researchers poking and prodding at the speculative execution engine that’s one of the key performance-boosting features behind all modern chips. The resulting research has spawned an almost never-ending onslaught of new vulnerabilities that threaten the safety of your system and private data. Unfortunately, these types of vulnerabilities are incredibly dangerous because they are undetectable—these tactics steal data by using the processor exactly as it was designed; thus, they are undetectable by any known anti-virus program.

The rash of fixes required to plug these holes also continues to grow, and many of them result in reduced performance. That’s particularly painful for Intel because it suffers from far more of these vulnerabilities than other vendors.

Intel currently has 242 publicly disclosed vulnerabilities, while AMD has only 16. That’s a 15:1 difference in AMD’s favor. It’s hard to ascertain if these limited discoveries in AMD processors are due to a security-first approach to hardened processor design, or if researchers and attackers merely focus on Intel’s processors due to their commanding market share: Attackers almost always focus on the broadest cross-section possible. We see a similar trend with malware being designed for Windows systems, by far the predominant desktop OS, much more frequently than MacOS, though that does appear to be changing.

Regardless, right now, AMD has had far fewer security holes to plug, and it made a few targeted in-silicon fixes for its Ryzen 5000 processors, thus lowering its exposure to the vulnerabilities. 

We’ve seen some of the fixes drop performance more than two or three architecture updates on Intel, which is particularly painful, and there’s no end to these exploits in sight.

Winner: AMD. The gap in AMD vs Intel CPU security is just too large to ignore. As things stand, Intel is susceptible to far more vulnerabilities than AMD. That could change as AMD gains market share, and security researchers increasingly turn their microscopes on its architecture. For now, Intel processors require far more mitigations to improve their security standing. These mitigations often come with a performance penalty, and Intel tends to suffer larger performance losses than the few fixes we’ve seen from AMD, granting Team Red the win.

Which Processor is Best: AMD or Intel?

AMD’s relentless onslaught with its Zen-based processors has redefined our expectations for both the mainstream desktop and the HEDT markets, catching Intel flatfooted as it remained mired on the 14nm process and Skylake architectures. The past several years have seen AMD CPUs go from value-focused and power hungry solutions to leading-end designs that deliver more cores, more performance, and lower power requirements.

Intel fought back by slowly adding features and cores across its product stack, but that has also resulted in negative side effects, like more power consumption and heat generation. These only serve to highlight the company’s struggles on the design and fabrication side of its operation. The move to the Cypress Cove microarchitecture helped Intel wring more power from fewer cores, but the design suffers from limitations because it was designed for 10nm, but etched on the now-ancient 14nm process. That restricts the number of cores and results in excessive power consumption. 

The AMD vs Intel CPU conversation is changing as Intel lowers pricing on its mainstream lineup. However, Intel still hasn’t eased its draconian segmentation policies that limit features, like overclockability, to pricey chips and motherboards. Intel’s tactic of squeezing every penny out of every feature has allowed AMD to offer a more compelling value story across the full breadth of the consumer desktop CPU market. 

Aside from a misstep in the value department with its Ryzen XT series, AMD has the top-notch performance to match its value story and create a solid price-to-performance ratio.

That’s an amazing reversal of fortunes for a company that teetered on the brink of bankruptcy a few years ago. AMD still has some work to do as it expands its ecosystem of OEM partners and works with the community to broaden software optimizations for its chips. Still, given the great mix of price, performance, and value, AMD is already in a good spot. Now, all it needs to do is secure more production capacity – production shortages have hamstrung the company in the wake of the pandemic, making the new Ryzen 5000 series processors difficult to find at reasonable pricing. 

Intel still holds sway with the innumerable customers that don’t use a discrete GPU, especially in the high-volume OEM market, so it has some time to try to wrest back the crown. The company’s Rocket Lake processors helped shore up Intel’s defenses in the critical mid-range, but, as we’ve seen, AMD isn’t sitting still. Ryzen 5000 has changed the paradigm entirely, and Rocket Lake can’t convincingly unseat AMD’s fastest processors. 

AMD wins the CPU war overall right now, but an Intel processor could still be the better choice depending on your needs. If you want the best in overclocking or software support, or if you want productivity performance without buying a discrete GPU, Team Blue has the advantage. But if you want the best balance of price and performance in the Intel vs AMD lineup, or just the plain old fastest performance possible, but in a power-efficient package, Team Red deserves your money.         

AMD vs Intel CPUs Intel AMD CPU Pricing and Value ✗ Gaming Performance X X Content Creation/Productivity ✗ Specifications ✗ Overclocking ✗ Power Consumption ✗ Drivers and Software ✗ Process Node ✗ Architecture ✗ Security ✗ Winner: AMD-Total 3 7

Categories: IT Info