Danh sách các tính năng được bao gồm trên Anycubic Vyper là một danh sách dài và dường như nó dài hơn mỗi khi tôi nhìn vào nó. Được thiết kế để cạnh tranh với máy in 3D tốt nhất , Vyper là một máy workhorse, với khối lượng xây dựng lớn và các tính năng hỗ trợ để giúp việc in ấn dễ dàng nhất có thể. Với giá bán lẻ 359 đô la (và giá bán trước là 299 đô la cho 3000 người mua đầu tiên khi ra mắt), Vyper hấp dẫn những người dùng đang tìm kiếm một chiếc máy đáng tin cậy chứ không nhất thiết là những người dùng tìm kiếm chiếc máy đầu tiên của họ.

Bo mạch 32-bit trên Vyper được trang bị trình điều khiển bước im lặng, vì vậy tiếng ồn đáng chú ý duy nhất tạo ra từ máy in đến từ các quạt làm mát được gắn vào đầu nóng. Những chiếc quạt này được thiết kế cho luồng không khí khối lượng lớn, điều này cho phép máy in lắng đọng và sau đó làm mát vật liệu nhanh hơn so với các máy in 3D tương tự, chẳng hạn như Creality Ender 3 Pro . Máy đùn bánh răng kép cũng cung cấp một cơ chế truyền động chắc chắn và giảm nguy cơ sợi tóc bị trượt hoặc tách ra tổng thể.

Thông số kỹ thuật của Anycubic Vyper

Dấu chân máy 20 x 18 x 20,3 inch (508mm x 457 x 516mm) Khối lượng bản dựng 9,6 x 9,6 x 10,2 inch (245mm x 245mm x 260mm) Chất liệu 1,75mm PLA, PLA +, ABS Vòi .4mm Xây dựng Nền tảng Nền tảng có thể tháo rời linh hoạt có kết cấu gia nhiệt Kết nối USB, thẻ SD Giao diện 4.3″Màn hình cảm ứng LCD màu Độ phẳng giường Cảm biến đo độ căng tự động

Mở gói và lắp ráp Anycubic Vyper

Máy in 3D Anycubic Vyper

(Tín dụng hình ảnh: Phần cứng của Tom)

Anycubic Vyper vận chuyển ở trạng thái bán lắp ráp và không yêu cầu bất kỳ hàn hoặc lắp ráp cơ khí phức tạp nào để ghép lại với nhau. Chân đế và giàn X/Z được lắp ráp sẵn và có các dây buộc zip ở các điểm khác nhau để ngăn giàn máy đùn hoặc nền xây dựng di chuyển trong quá trình vận chuyển. Ngoài chân đế, giàn và màn hình cảm ứng LCD, Vyper còn bao gồm đầu đọc thẻ SD và USB SD, cáp nguồn và cáp USB, hướng dẫn lắp ráp được in, hai đầu phun bổ sung và một bộ phím Allen đầy đủ để lắp ráp máy.

(Tín dụng hình ảnh: Tom’s Hardware)

Không giống như một bộ kit Máy in 3D DIY e Creality Ender 3 Pro yêu cầu bạn để xây dựng một máy in 3D từ một hộp đầy đủ các bộ phận, Vyper cung cấp trải nghiệm thân thiện với người mới bắt đầu chỉ cần 7 bu lông và một số kết nối điện để thiết lập và vận hành. Điều này lý tưởng cho những người dùng không có nhiều kinh nghiệm về máy móc hoặc những người dùng cao cấp, những người sẵn sàng chi thêm một ít tiền cho một máy in yêu cầu ít công việc hơn để chạy.

(Tín dụng hình ảnh: Phần cứng của Tom)

Tôi mất khoảng 30 phút để lắp ráp hoàn chỉnh Vyper và quá trình này có thể được chia thành từng phần o hai phần: lắp ráp cơ khí và lắp ráp điện. Việc lắp ráp cơ khí chỉ yêu cầu tôi tháo các dây buộc zip giữ cố định giàn và siết chặt các bu lông M5x45 đi kèm để hoàn thiện khung máy in. Cụm điện liên quan đến việc kết nối động cơ Z và chạy một đầu nối chốt với giàn động cơ X. Tất cả các dây đều đã được kết thúc và được đánh dấu rõ ràng, vì vậy bạn sẽ không gặp bất kỳ rắc rối nào ở đây.

Máy in 3D Anycubic Vyper

(Tín dụng hình ảnh: Phần cứng của Tom)

Thiết kế của Anycubic Vyper

(Tín dụng hình ảnh: Phần cứng của Tom)

Với giá đỡ ống chỉ gắn bên và các nắp đậy bằng nhựa lớn, Anycubic Vyper là một máy in 3D trông rất đặc biệt. Cả hai quy trình cân bằng giường tự động của ống đệm và máy đo độ căng gắn bên đều tương tự như quy trình được tìm thấy trên Creality CR-6 SE , một máy in có vẻ ngoài đặc biệt tương tự. Tôi rất ấn tượng với chất lượng xây dựng tổng thể của Vyper và các lớp vỏ đúc phun trên các bộ phận chuyển động có cảm giác giống như nhựa chất lượng cao.

Máy in 3D Anycubic Vyper

(Tín dụng hình ảnh: Phần cứng của Tom)

Các đùn nhôm trên Neptune 2 có V-slot cho các con lăn ở hai bên và có màu đen mờ, mịn chết tiệt. Khung không có rãnh ở các bề mặt phía trước, mang lại cho máy vẻ ngoài rất sạch sẽ và chuyên nghiệp. Tôi luôn nghĩ rằng các đùn nhôm kiểu 2020 điển hình được sử dụng cho các khung máy in 3D trông hơi giống một dự án chế tạo rô bốt ở trường trung học, có thể rất hiệu quả trong một môi trường chuyên nghiệp.

(Tín dụng hình ảnh: Phần cứng của Tom)

Vỏ trong được gắn với Vyper hoàn toàn bao quanh du hệ thống máy đùn al-gears. Hệ thống Bowden này đẩy dây tóc từ ống chỉ đến đầu nóng và sử dụng mức độ căng có thể điều chỉnh để bù đắp nếu vật liệu bị tách ra. Tôi thích thiết kế thẳng hàng của Vyper, gửi dây tóc qua cảm biến hết trực tiếp vào mô-đun máy đùn.

Nếu dây tóc cung cấp hết, máy in sẽ tự động tạm dừng bản dựng và cho phép bạn thay thế nó trước khi tiếp tục. Đối với một máy in có khối lượng in lớn như Vyper, đây là một tính năng quan trọng để tránh lỗi bộ phận trên bản in dài vào phút cuối.

Hình ảnh 1 trong 2

Máy in 3D Anycubic Vyper

(Tín dụng hình ảnh: Phần cứng của Tom)

Hình ảnh 2 trong tổng số 2

Máy in 3D Anycubic Vyper

(Image credit: Tom’s Hardware)

The X and Y axes are equipped with belt tensioners, which allow you to adjust the tension of the belt without having to fully disassemble the printer. The belts can stretch out over time, so the ability to make adjustments like this is a nice touch for a printer that is designed to be a workhorse like the Vyper.

Anycubic Vyper 3D Printer

(Image credit: Tom’s Hardware)

The Vyper has an integrated drawer on the bottom of the printer which lets you store commonly used tools (filament snips, Allen keys, etc.) unobtrusively and out of sight. I’m a big fan of this style of storage, as quick access to an Allen key or tweezers can help save a print that is failing, and no one likes having to search through drawers to find the right tool. The space under the printer would typically be unused, so this is a clever way to solve the problem without overengineering.

Image 1 of 2

Anycubic Vyper 3D Printer

(Image credit: Tom’s Hardware)
Image 2 of 2

Anycubic Vyper 3D Printer

(Image credit: Tom’s Hardware)

The drawer has two magnets on the back as well as a pair of magnets embedded inside the printer. This is a clever way to pull the drawer snug during printing, but the magnets on my drawer were actually installed backwards. This means instead of closing tight, the drawer is actively repelled from the back of the machine, and there is a permanent gap where the drawer won’t close. This isn’t a huge issue and can be solved by flipping the magnets on the drawer, but I was a little concerned about running into a QC issue so early in the assembly process.

User Interface on Anycubic Vyper

(Image credit: Tom’s Hardware)

The user interf ace on the Anycubic Vyper is a 4.3-inch color touchscreen LCD, mounted on the right side of the machine. This location means that it can be easily accessed during printing, and it’s not covered by the moving bed of the printer (like the bottom-mounted screen of the Elegoo Neptune 2). I really liked the matte finish on the Vyper’s LCD; it felt very responsive and looked professional. The backlit LCD is easily readable and the large 4.3-inch format is surprisingly large for a 3D printer (for reference, the original iPhone LCD size was only 3.5-inches.)

(Image credit: Tom’s Hardware)

The housing for the LCD features a geometric pattern embossed on the rear, and this sort of atten tion to detail is something that I always want to take a moment and appreciate. Once mounted, you’ll likely never see this feature again, so its inclusion is really designed to show a higher level of intentionality in the design of the machine.

Calibrating and Leveling the Anycubic Vyper

(Image credit: Tom’s Hardware)

Th e Anycubic Vyper uses an automatic bed leveling process which completely eliminates the need to calibrate the printer manually with thumbscrews and a sheet of paper. In fact, the build platform on the Vyper is mounted directly to the moving gantry, so there aren’t even any thumbscrews to turn. Most automatic bed leveling processes will still require some degree of manual input (such as the hybrid approach of the Flashforge Adventurer 3 Lite), but the Vyper is a one-button operation, and runs completely free of operator input.

(Image credit: Tom’s Hardware)

After clicking the “Auto-leveli ng” button, the Vyper will automatically begin the leveling process. The Vyper uses a 16-point mesh to calculate the offsets for the build surface at any given point, and the nozzle will slowly move down and make contact with the bed at each of these 16 points. I was impressed with the speed of the auto bed-leveling, which only took a few minutes. Unlike printers like the Prusa Mini+ which will run the calibration before every print, the Vyper runs the calibration as needed and I only ran it once in over 70 hours of testing. This saves time and prevents the calibration from running unnecessarily, but it could easily be added into the starting gcode if you did want to run it before each print.

Build Platform on Anycubic Vyper

(Image credit: Tom’s Hardware)

The build surface on the Anycubic Vyper is a textured flexible spring steel sheet which is held in place by a magnetic base on the build platform. This sheet is very thin and flexible, measuring in at an average thickness of.51mm. Removing parts from this style of build platform is so easy, it almost feels like cheating. The textured surface locks parts down during printing when hot, and after cooling they just slide right off with no tools required. This isn’t a new concept by Anycubic (Prusa has been doing it for years on the Mini+ and their i3 MK3S), but it’s still not a particularly common approach.

(Image credit: Tom’s Hardware)

It’s hard to overstate the impact a build surface like this can have on the overall experience of using a 3D printer. If a print doesn’t fully stick to a surface, it can delaminate during printing which will cause the print to fail. Printers have all kinds of techniques to combat this (thicker or slower first layer, aftermarket adhesives, etc.), but the surface itself plays a large part in the success of the printer. A textured metal surface like this is easy to use, doesn’t require any hand tools for part removal, and can be cleaned with isopropyl alcohol to prevent any build-up.

Hot End on Anycubic Vyper

(Image credit: Tom’s Hardware)

A lot of the magic of the Anycubic V yper comes from the uniquely designed hot end, which contains some interesting features that you won’t see in many other printers. The hot end cover is designed for maximum airflow, and uses three fans to cool both the heat break on the hot end as well as the part as it’s being printed. A cool heat break (the cylindrical part in the above picture) will prevent heat from travelling up the filament during printing, which can cause it to soften, deform, and cause issues with print quality.

(Image credit: Tom’s Hardware)

The strain gauge (the small black metal bracket above the heat b reak) is the secret ingredient in the automatic leveling system used by the Vyper. The strain gauge measures deformation of a surface, so it can detect when the nozzle makes contact with the build surface by the force transferred through the heat break. This is an inexpensive way to create a quick and accurate leveling system, and I found this style of leveling system to be reliable and easy to use.

Printing on the Anycubic Vyper

Image 1 of 2

Anycubic Vyper 3D Printer

(I mage credit: Anycubic)
Image 2 of 2

Anycubic Vyper 3D Printer

(Image credit: Anycubic)

The Anycubic Vyper includes an SD card preloaded with a test print named ‘owl.gcode’. Taking a look at the toolpath of this model, it’s clear that the seam alignment (where each layer starts and stops) has not been optimized, which will lead to a model with small marks spread without. You can see the difference in the above pictures; the owl on the left is the preloaded model, and the owl on the right is the same model with the same settings but with the seam optimized for aesthetics. Anycubic provided a spool of ‘3D Consumables’ brand grey PLA with this printer, which is what I used for all parts in this review.

(Image credit: Tom’s Hardware)

Because the printer had already calibrated, I started this print without making any adjustments to the bed leveling. The printer heated to temperature quickly and started the print with a skirt around the model, which adhered nicely to the textured build surface. As I was expecting, at some of the start/stop points of each layer, there was a little bit of extra material which can be seen in the picture above. This is easy enough to remove, but a simple settings adjustment at the factory would have provided a far more impressive demonstration print.

(Image credit: Tom’s Hardware)

The model printed in 1 hour and 19 minutes, and after a quick cooldown, the owl model popped right off of the textured build s urface.The model felt solid and well-made, but the small defects caused by the seam added up throughout the print and gave it a messy appearance. I appreciated the quick build speed of this test, as it does verify that the printer is mechanically and electrically functional without using a large amount of material or time. I do wish that Anycubic had spent just a bit more time preparing the model, which would give first-time users a much better first impression of the printer.

Anycubic Vyper 3D Printer

(Image credit: Tom’s Hardware)

The textured build surface gives the model a slightly grainy appearance on the bottom layer, which is a nice to uch and makes the print seem a bit more uniform. Similar to the textured sheet found on the Prusa Mini+, this keeps the print from having a mirror-smooth bottom layer which looks a little less consistent overall.

Slicing Software for the Anycubic Vyper

(Image credit: Ultimaker)

Instead of developing their own proprietary in-house slicer app, Anycubic has chosen to ship the Vyper with a copy of the Ultimaker Cura slicer app and a profile that they designed specifically for the Vyper. Other manufacturers will sometimes create their own fork, or derivative, of the Cura slicer app as opposed to creating their own app from scratch. An example of this is the version of Elegoo Cura that comes with the Elegoo Neptune 2. These apps are extremely similar in overall functionality and appearance, but the user experience can depend on how easy the manufacturer makes it to get your printer up and running with a built-in profile.

(Image credit: Ultimaker)

The Vyper has designed a custom profile designed for the Cura slice r app, and they have included it on the SD card. I dug into the profile, and was surprised to see that they had the default print speed set to 80mm/s. For reference, the Creality Ender 3 Pro and Elegoo Neptune 2 typically print around 40 or 50mm/s, so the Vyper’s speed is set considerably faster. There are many small modifications that I had to make to this profile (it’s set to print infill before walls, which almost guarantees a bad looking print with visible infill patterns), so you’ll need to spend a bit of time dialing it in before using it.

(Image credit: Tom’s Hardware)

The Anycubic Vyper is designed for high-throughput 3D printing, and the feature set supports this concept by providing quality-of-life features like a flexible bed, aggressive part cooling, and adjustable belt tension. To give some perspective to this feature set, take a look at the build volume comparison between the Vyper and the Elegoo Neptune 2.

Elegoo Neptune 2 Anycubic Vyper
Bed Leveling Manual Automatic
Build Dimensions 8.67 x 8.67 x 9.84 inches 9.65 x 9.65 x 10.24 inches
Build Volume 170.63 cubic inches 197.63 cubic inches
Printer Dimensions 16.93 x 16.77 x 18.11 inches 20 x 17.99 x 20.32 inches
Printer Volume 5,141.72 cubic inches 7,311.14 cubic inches
Build/Footprint Ratio (higher is better) 3.30% 2.70%

The build volume of the Vyper, while slightly larger than the Neptune 2, comes at the expense of a slightly larger footprint. Given the price difference between the $160 Neptune 2 and the $359 Vyper, you might be wondering where the difference in price is coming from. The Vyper utilizes an automatic bed leveling system, which means you won’t spend much time when printing doing calibrations.

The hot end is robustly built, with a total of 3 cooling fans (1 fan for the hot end, two for the part) built in as opposed to the pair (1 fan for the hot end, 1 for the part) found on the Neptune 2. These features (and others) all paint the picture of a printer that is designed for problem-free printing with a minimal amount of tweaking or calibration.

(Image credit: Tom’s Hardware)

Printing Multiple Parts on the Anycubic Vyper

(Image credit: Tom’s Hardware)
Layer Height 0.2mm
Infill Percentage 10%, Gyroid
Print Speed 80mm/second
Extruder Temperature 200 degrees Celsius (392 degrees Fahrenheit)
Heated Bed Temp 60 degrees Celsius (140 degrees Fahrenheit)
Print Time 31 Hours, 1 Minute
Image 1 of 2

Anycubic Vyper 3D Printer

(Image credit: Ultimaker)
Image 2 of 2

Anycubic Vyper 3D Printer

(Image credit: Ultimaker)

A printer like the Anycubic Vyper is an appealing machine for anyone making small-to-medium batches of production parts who needs reliable, repeatable performance and a printer capable of high nesting density. To test out this application, I used a knurled nut and bolt combination by Thingiverse user akira3dp0 as a simulation of a part that requires accuracy and repeatability. I placed 42 individual parts on the tray for a total of 21 nut/bolt combinations and used the settings provided by Anycubic on the SD card as my default settings.

(Image credit: Tom’s Hardware)

The Vyper completed the print on the very first try, an impressive feat considering the ambitious nature of a build like this. Typically, an FDM 3D printer doesn’t have a perfectly flat build surface so it’s possible for a single part to detach mid-print and collide with the other parts, ruining the build. The auto-leveling feature of the Vyper allowed for flawless adhesion across the build surface and the parts all printed successfully.

(Image credit: Tom’s Hardware)

I did notice that the print estimate was incorrect by a non-trivial margin; the original estimate was 24 hours but the actual print time was just over 31. This incorrect print estimate was the only real issue I noticed; the parts all printed without any part defects or warping and the threads worked perfectly without needing any post-processing.

(Image credit: Tom’s Hardware)

After the print was completed, I let the build surface cool to room temperature before removing the parts. The nuts and bolts detached almost completely effortlessly; all I had to do was give the platform a slight bend and the parts came tumbling off. This is where the flexible textured spring steel surface really shines, the platform can be cleared and ready for the next build without using any tools and with virtually no downtime.

With a print time of 31 hours to produce 42 individual parts, one single Vyper 3D printer is capable of pumping out 210 of these individual parts per week, an impressive figure that could be further optimized by decreasing print resolution, decreasing infill percentage, or various other parameters.

Printing Large Parts on the Anycubic Vyper

Anycubic Vyper 3D Printer

(Image credit: Ultimaker)
Layer Height 0.3mm
Infill Percentage 10%, Grid
Print Speed 50mm/second
Extruder Temperature 200 degrees Celsius (392 degrees Fahrenheit)
Heated Bed Temp 60 degrees Celsius (140 degrees Fahrenheit)
Print Time 16 Hours, 22 Minutes

The large build volume of the Anycubic Vyper lends itself to printing large assemblies in a single print, like this Table Clamp from PrusaPrinters. This functional model has a total of seven individual parts and can comfortably fit on the build surface of the Vyper. Printed using the provided profile, this model printed in 16 hours and 22 minutes and stayed locked to the build platform for the duration of the print. After a quick cooldown, the model was easily removed from the build surface and I didn’t need to use any tools or scrapers.

(Image credit: Tom’s Hardware)

The threads on this model are all functional, and the clamp works as intended. I was impressed with how sturdy it felt, even at a relatively low 10% infill. This print drove home the Vyper’s ability to print functional parts that can see end-use, and the entire build completed without any issues or interruptions.

(Image credit: Tom’s Hardware)

Bottom Line

(Image credit: Tom’s Hardware)

I was impressed with the overall experience of using the Anycubic Vyper, and I have no doubt that this printer will find its niche among users interested in printing parts for production or simply just printing large volume parts. The solid build construction and fast set up time make it ideal for setting up a fleet of these machines quickly, or just for a fun weekend project. 

The Anycubic Vyper is officially launching for sale on June 10th at 7 AM PST. Anycubic is using a hybrid model to launch the printer where the pricing structure is similar to a Kickstarter or other crowdfunding campaign but the machine is available directly from the manufacturer. The first 3,000 units sold will be priced at $299, and the regular retail price of $359 will be charged for all subsequent orders. The Creality CR-6 Kickstarter attracted over 10,000 backers at various levels for a 3D printer with similar specs and pricing, so it’s very likely the first 3,000 units will sell quickly. Given the current $429 price of the Creality CR-6 SE, the Vyper offers a competitively priced alternative with similar features and specs.

Categories: IT Info